Distributed Transactions

e Distributed Transactions

e Concurrency control and locks

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 15

Transactions

*Transactions provide higher level mechanism
for atomicity of processing in distributed systems

— Have their origins in databases

eBanking example: Three accounts A:$100, B:
$200, C:$300

— Client 1: transfer $4 from A to B

— Client 2: transfer $3 from C to B

*Result can be inconsistent unless certain
properties are imposed on the accesses

University of
Massachusetts | Compsci 677: Distributed and OS
Ambherst

Client 1

Client 2

Read A: $100

Write A: $96

Read C: $300

Write C:$297

Read B: $200

Read B: $200

Write B:$203

Write B:$204

Lec. 15

2

ACID Properties

*Atomic: all or nothing Client 1 Client 2
«Consistent: transaction takes system from | "eadA:$100
one consistent state to another Write A: $96
«Isolated: Immediate effects are not visible | e B:$200
to other (serializable) Write B:$204
Durable: Changes are permanent once Read C: $300
transaction completes (commits) Write C:$297
Read B: $204
Write B:$207
ﬂ%isvsi?ﬁﬁysgﬁs Compsci 677: Distributed and OS Lec. 15 3
Amherst
Transaction Primitives
Primitive Description
BEGIN_TRANSACTION Make the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise
Example: airline reservation
Begin_transaction
if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens, Delhi)==full) Abort_transaction
End_transaction
ﬁgls‘gl;;s}lltg’szus Compsci 677: Distributed and OS Lec. 15 4

Ambherst

Distributed Transactions

a) Anested transaction

b) A distributed transaction

Nested transaction

‘Subtransactionl ‘Subtransaction ‘

Distributed transaction

Airline database Hotel database

Two different (independent)
databases

@

University of
Massachusetts | Compsci 677: Distributed and OS

Amherst

‘Subtransaction ‘ ‘Subtransaction)
f o {

Distributed database

Two physically separated
parts of the same database

(b)

Lec. 15

Implementation: Private Workspace

e Each transaction get copies of all files, objects

e Can optimize for reads by not making copies

e Can optimize for writes by copying only what is required - copy on write

e Commit requires making local workspace global

L

Free blocks
(@)

University of
Massachusetts | Compsci 677: Distributed and OS

Ambherst

L I
// 2] \
| \ 2] ™ |
\\ \ 3
T
EDJ
SIHE)

Lec. 15

Option 2: Write-ahead Logs

* In-place updates: transaction makes changes directly to all files/objects

* Write-ahead log: prior to making change, transaction writes to log on stable storage

— Transaction ID, block number, original value, new value
* Force logs on commit
e |[f abort, read log records and undo changes [rollback]

e Log can be used to rerun transaction after failure

Both workspaces and logs work for distributed transactions

Commit needs to be atomic [will return to this issue in later lecture]

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 15

Writeahead Log Example

0; Log Log

0;

EGIN_TRANSACTION;

X=Xx+1; [x=0/1] [x=0/1]
y=y+2 ly = 0/2]
X=y"y;

END_TRANSACTION;

(@) (b) (©

X
y
B

e a)Atransaction
* b)-—d) The log before each statement is executed

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Log

[x=0/1]
ly = 0/2]
x = 1/4]

(d)

Lec. 15

Concurrency Control

* Goal: Allow several transactions to be executing simultaneously such that
— Collection of manipulated data item is left in a consistent state
* Achieve consistency by ensuring data items are accessed in an specific order

— Final result should be same as if each transaction ran sequentially

e Concurrency control can implemented in a layered fashion

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15
Amherst

Concurrency Control Implementation

Transactions

\y/

READMWRITE | Transaction | BEGIN_TRANSACTION
manager END_TRANSACTION
LOCK/RELEASE
Scheduler or
Timestamp operations
Data Execute read/write
manager

e General organization of managers for handling transactions.

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15
Ambherst

Distributed Concurrency Control

General organization of
managers for handling
distributed transactions.

Transaction
manager

Scheduler Scheduler Scheduler
A0 SEE . 4 Y| -r>
Y akTa v o La v
Data Data Data
manager manager manager
. . Machine A Machine B Machine C
University of) o
Massachusetts | Compsci 677: Distributed and OS Lec. 15 1
Ambherst
Serializability
BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x=0; x=0; x = 0;
X=X+1; X=X+ 2; X=X+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION
@) (b) ()
Schedule 1 X=0; x=x+1; x=0; x=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; Xx=x+3; Legal
Schedule 3 Xx=0; x=0; x=x+1; x=0; X=x+2; X=X+ 3; lllegal
* Key idea: properly schedule conflicting operations
¢ Conflict possible if at least one operation is write
— Read-write conflict
— Write-write conflict
University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15 12
Ambherst

Optimistic Concurrency Control

» Transaction does what it wants and validates changes prior to commit
— Check if files/objects have been changed by committed transactions since they were opened

— Insight: conflicts are rare, so works well most of the time

Works well with private workspaces
* Advantage:
— Deadlock free
— Maximum parallelism
¢ Disadvantage:
— Rerun transaction if aborts
— Probability of conflict rises substantially at high loads

* Not used widely

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 15

13

Two-phase Locking

* Widely used concurrency control technique
» Scheduler acquires all necessary locks in growing phase, releases locks in shrinking phase
— Check if operation on data item x conflicts with existing locks
¢ |f so, delay transaction. If not, grant a lock on x
— Never release a lock until data manager finishes operation on x
— One a lock is released, no further locks can be granted
* Problem: deadlock possible
— Example: acquiring two locks in different order

¢ Distributed 2PL versus centralized 2PL

University of
Massachusetts | Compsci 677: Distributed and OS
Ambherst

Lec. 15

14

Two-Phase Locking

Lock point

Growing phase Shrinking phase

»-

Number of locks

Time —»
* Two-phase locking.
University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15 15
Amherst

Strict Two-Phase Locking

Lock point

Growing phase Shrinking phase

»

All locks are released
at the same time
A

Number of locks

> <

Time —»
e Strict two-phase locking.
University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15 16

Ambherst

Timestamp-based Concurrency Control

e Each transaction Ti is given timestamp ts(Ti)
e |f Ti wants to do an operation that conflicts with Tj
— Abort Ti if ts(Ti) < ts(Tj)
* When a transaction aborts, it must restart with a new (larger) time stamp
* Two values for each data item x
— Max-rts(x): max time stamp of a transaction that read x

— Max-wts(x): max time stamp of a transaction that wrote x
University of

Massachusetts | Compsci 677: Distributed and OS Lec. 15 17
Amherst

Reads and Writes using Timestamps

e Read(x)
— If ts(T;) < max-wts(x) then Abort T;
— Else
» Perform R;(x)
o Max-rts(x) = max(max-rts(x), ts(T;))
o Write,(x)
— If ts(T,)<max-rts(x) or ts(T,)<max-wts(x) then Abort T;
—Else
e Perform W;(x)

o Max-wts(x) = ts(T)

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 15 18
Amherst

Pessimistic Timestamp Ordering

tspp®) tspr(¥) ts(T) tsir(X) ts(T)
@ |w @ \ . @ () oK
(@) Time —» terjtative (e) Time —»
tsp() tSpp() ts(T) write tspp() 1S (0 ts(T)
@ @ | @ @ @ oK
(b) Time —» ® Time —»
ts(T) tspp(x) ts(l) sk
@ | \ @ | @ 1
© ™4 Abort @ me™ L Abort
ts(T2) tSWR(X) ts(T2) tS’tent(x)
@ | @ | @
(d) Time —» (h) Time —»

e Concurrency control using timestamps.

University of
Massachusetts | Compsci 677: Distributed and OS
Amherst

Lec. 15

19

